

holz.bau forschungs gmbh

Cross Laminated Timber (CLT) in Europe: Resistance against Fire

Cross Laminated Timber (CLT) Fire Performance Workshop Canadian Wood Councils

Univ.-Prof. Dipl.-Ing. Dr.techn. Gerhard Schickhofer Institute for Timber Engineering and Wood Technology, Graz University of Technology | AT Competence Centre holz.bau forschungs gmbh Graz | AT

Gerhard Schickhofer

Vancouver, Canada, 23rd March 2010

2

CONTENT

- "TIMBER" at the Graz University of Technology
 - Institute for Timber Engineering and Wood Technology (TEWT)
 - Competence Centre holz.bau forschungs gmbh (hbf)
 - R&D Areas
- Cross Laminated Timber and Fire
 - Motivation for Research on Fire-resistance of CLT
 - Introduction | History
 - Research Project hbf TUG ETHZ
 - Future Developments
- Summary

3

CONTENT

- "TIMBER" at the Graz University of Technology
 - Institute for Timber Engineering and Wood Technology (TEWT)
 - Competence Centre holz.bau forschungs gmbh (hbf)
 - R&D Areas
- Cross Laminated Timber and Fire
 - Motivation for Research on Fire-resistance of CLT
 - Introduction | History
 - Research Project hbf TUG ETHZ
 - Future Developments
- Summary

GRAZ UNIVERSITY OF TECHNOLOGY

Austria / Europe 7 faculties | 11,264 students | staff 2,222 budget: € 150 Mill. (1/3 3rd party budget)

Faculty of Civil Engineering Sciences

17 institutes | about 1,140 students [207 "diploma", 693 "Bachelor", 146 "Master", 93 "PhD"]

Institute for Timber Engineering and Wood Technology

1991: Chair for Timber Engineering

10|2004: Institute Timber Engineering and Wood Technology

Scientific staff: 7.0 FTE | third-party-budget: € 250.000 (2008)

Competence Centre holz.bau forschungs gmbh

- 09|2002 Acceptance of <u>4-year-fundings:</u> Competence Center Timber Engineering and Wood Technology
- 12|2002 Competence Centre holz.bau forschungs gmbh
- 09|2007 Acceptance of <u>5-year-fundings:</u> K-Project "timber.engineering" | COMET-Programme

Scientific staff: **7.1 FTE** | budget: € **1.000.000** (2008)

AREA 1 Timber Engineering (TE) – Design and Construction Sciences (DCS)

1.1 Shell and Spatial Timber Constructions (SSTC)

1.2 Innovative and Intelligent Connection Systems (IICS)

Gerhard Schickhofer

Vancouver, Canada, 23rd March 2010

5

AREA 2 Wood Technology (WT) – Material and Structure Sciences (MSS)

2.1 Advanced Products and Test Methods (APTM)

2.2 Material Modelling and Simulation Methods (MMSM)

Gerhard Schickhofer

Vancouver, Canada, 23rd March 2010

Institute for Timber Engineering and Wood Technology

6

7

CONTENT

- "TIMBER" at the Graz University of Technology
 - Institute for Timber Engineering and Wood Technology (TEWT)
 - Competence Centre holz.bau forschungs gmbh (hbf)
 - R&D Areas
- Cross Laminated Timber and Fire
 - Motivation for Research on Fire-resistance of CLT
 - Introduction | History
 - Research Project hbf TUG ETHZ
 - Future Developments
- Summary

holz.bau forschungs gmbh

8

EN 1995-1-2:2006

Design of timber structures - Part 1-2_General - Structural fire design.pdf

)	
	Y	

Table 3.1 – Design charring rates β_0 and β_n of timber, LVL, wood panelling and wood-
based panels

	β₀ mm/min	β _n mm/min
 a) Softwood and beech Glued laminated timber with a characteristic density of ≥ 290 kg/m³ Solid timber with a characteristic density of ≥ 290 kg/m³ 	0,65 0,65	0,7 0,8 because of cracks

 $\beta_0 \dots$ design charring rate for one-dimensional under standard fire exposure

 $\beta_n \dots$ is the notional design charring rate, the magnitude of which includes the effect of corner roundings and fissures

Cross Laminated Timber CLT

- Wide spanned, multi-layered wood based product
- Strength graded board as base product
- Orthogonally glued layers

- Up to now CLT is not regulated within the design standard!
- Assumption: if the base-material "board" and the board-based product GLT have the same charring rate β_0

 \Rightarrow than the board-based product CLT also has the

same charring rate

Signs of need for research

1. Research Project ETH Zürich (Technical Report published 2007)

"...single layers of 3-layer-boards fell off after burn-through ... it can be assumed that claddings with layered cross sections, e.g. 3-layer-boards, have an disadvantageous behaviour compared to solid timber boards."

2. European Technical Approval ETA from a producer (2007)

Resistance to fire		
 Charring rate, see Annex 4 Charring of cover layer only. The cross section of the remaining wood shall be reduced by 10 %. At least 3 mm of the cover layer shall remain unchared. 	EN 1995-1-2	0,67 mm/min
 Charring of more layers than the cover layer. 		0,76 mm/min

Research on Fire behaviour of CLT

- 1. Bresta H KLH (1998): fire-bending tests on loaded 5-layer CLT
- 2. HAAS (2006): full scale fire tests on timber-houses with a light-weightroof and with a timber solid construction roof (CLT)
- 3. SOFIE (2007): full scale fire test on a 3-storey-building (see A. Ceccotti)
- 4. CLT-FIRE hbf-TUG-ETHZ (2009): first parameter studies during fire-tests on CLT
- Current: Fire tests in Sweden/SP Trätek PhD work startet at ETH

1. Bresta H – KLH (1998): fire-bending tests on loaded 5-layer CLT

2. HAAS (2006): full scale fire tests

Timber Light-weight Construction **TLC**

Timber Solid Construction TSC

holz.bau forschungs gmbh

Fire Research on CLT

Timber Solid Construction **TSC**

Gerhard Schickhofer

Vancouver, Canada, 23rd March 2010

2. HAAS (2006): full scale fire tests

Timber Light-weight Construction **TLC**

Timber Solid Construction **TSC**

Gerhard Schickhofer

Vancouver, Canada, 23rd March 2010

15

holz.bau forschungs gmbh

Fire Research on CLT

2. HAAS (2006): full scale fire tests

Timber Light-weight Construction **TLC**

Timber Solid Construction **TSC**

tudy research engineering test center Introduction | History

Fire Research on CLT

3. SOFIE (2007): full scale fire test on a 3-storey-building (see A. Ceccotti)

 CLT-FIRE hbf-TUG-ETHZ (2009): first parameter studies during fire-tests on CLT
 Parameters - glue, thickness of layers, orientation

	10/10/10/10/20	20/20/20	30/30 Trägerplatte
PUR-1	X		X
PUR-2	X		
PUR-3	X	X	
PUR-4	X	X	
PUR-5		X	
MUF	X		X

1 specimen with 5-layered uni-directional cross section and PUR

4. CLT-FIRE hbf-TUG-ETHZ (2009): first parameter fire-tests on CLT

Parameters - glue, thickness of layers, orientation

	Trögerplatte	Trägerplatte	Trägerplatte
PUR-1	Х		Х
PUR-2	Х		
PUR-3	Х	Х	
PUR-4	Х	Х	
PUR-5		Х	
MUF	Х		X

1 specimen with 5-layered unidirectional cross section and PUR Determination of charring rate and charring depth via temperature with thermocouples placed between the single layers

1K-PUR: Oberservations during fire tests

MUF: Oberservations during fire tests

Charred layers do not fall off – thermal insulation as known from sawn timber and GLT is given

1K-PUR: charring depth

⇒ Effect due to different 1K-PUR glues regarding charring rates may be neglected.

Charring – Parameter GLUE – 1K-PUR / MUF

⇒ Type of glue (PUR – MUF) has a significant influence on the charring behaviour

EN 1995-1-2:

Difference between unprotected

and initial protected timber cross sections.

Proposal to EN 1995-1-2 for the design of CLT

- Cross sections with 1-K PUR → initial protected timber
- Cross sections with MUF → unprotected timber

Proposal to EN 1995-1-2 for the design of CLT

- Cross sections with 1-K PUR → initial protected timber
- Cross sections with MUF → unprotected timber

Comparison between proposal and test results

2-layer specimen MUF

-10

Proposal for design: Difference between PUR an MUF for R30

No difference between PUR and MUF!

Proposal for design: Difference between PUR an MUF for R60

Difference between PUR and MUF 5 mm!

Contact: Univ.-Prof. Dipl.-Ing. Dr.techn. Gerhard Schickhofer

Institute for Timber Engineering and Wood Technology, Graz University of Technology | AT Competence Centre holz.bau forschungs gmbh Graz | AT

Inffeldgasse 24/I A-8010 Graz

gerhard.schickhofer@tugraz.at phone.: +43 316 873 4600