

CLT – European Experiences

Cross-Laminated Timber Symposium Vancouver Convention Center

Univ.-Prof. Dipl.-Ing. Dr.techn. Gerhard Schickhofer

Institute for Timber Engineering and Wood Technology, Graz University of Technology | AUT Competence Centre holz.bau forschungs gmbh Graz | AUT

Gerhard Schickhofer

Vancouver, Canada, 8th February 2011

2

CONTENT

engineering test center

- "TIMBER" at the Graz University of Technology
 - Institute for Timber Engineering and Wood Technology (TEWT)
 - Competence Centre holz.bau forschungs gmbh (hbf)
 - R&D Areas
- "Solid Timber Construction (STC)" Cross Laminated Timber (CLT)
 - Introduction | History
 - Production | Transport | Assembling
 - Basics of Design (Bending and Rolling Shear)
 - Applications
- Summary | Outlook

3

CONTENT

- "TIMBER" at the Graz University of Technology
 - Institute for Timber Engineering and Wood Technology (TEWT)
 - Competence Centre holz.bau forschungs gmbh (hbf)
 - R&D Areas
- "Solid Timber Construction (STC)" Cross Laminated Timber (CLT)
 - Introduction | History
 - Production | Transport | Assembling
 - Basics of Design (Bending and Rolling Shear)
 - Applications
- Summary | Outlook

GRAZ UNIVERSITY OF TECHNOLOGY

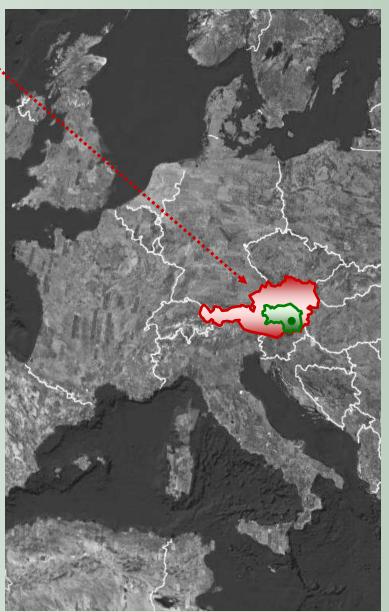
Austria / Europe 7 faculties | 11,264 students | staff 2,222 (2010) budget: € 150 Mill. (1/3 3rd party budget)

Faculty of Civil Engineering Sciences

17 institutes | about 1.250 students (2010) [328 "Diploma", 672 "Bachelor", 158 "Master", 93 "PhD"]

Institute for Timber Engineering and Wood Technology

1991: Chair for Timber Engineering


10|2004: Institute Timber Engineering and Wood Technology

Scientific staff: 8.2 FTE | 3rd party-budget: € 320,000 (2010)

Competence Centre holz.bau forschungs gmbh

- 09|2002 Acceptance of <u>4-year-fundings:</u> Competence Center Timber Engineering and Wood Technology
- 12|2002 Competence Centre holz.bau forschungs gmbh
- 09|2007 Acceptance of <u>5-year-fundings:</u> K-Project "timber.engineering" | COMET-Programme

Scientific staff: **7.0 FTE** | budget: € 950,000 (2010)

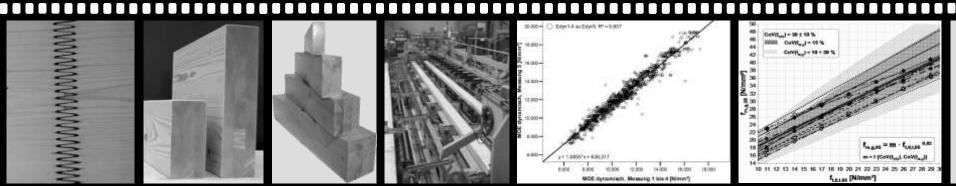
AREA 1 Timber Engineering (TE) – Design and Construction Sciences (DCS)

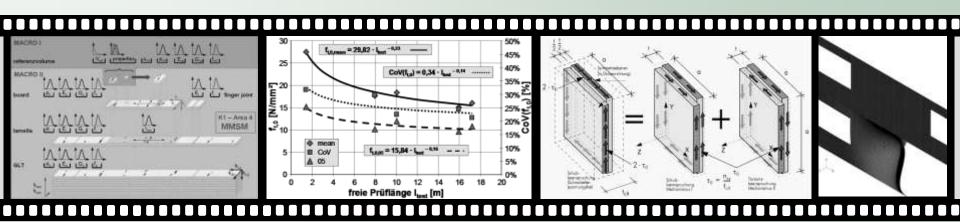
1.1 Shell and Spatial Timber Constructions (SSTC)

1.2 Innovative and Intelligent Connection Systems (IICS)

Gerhard Schickhofer

Vancouver, Canada, 8th February 2011


5



AREA 2 Wood Technology (WT) – Material and Structure Sciences (MSS)

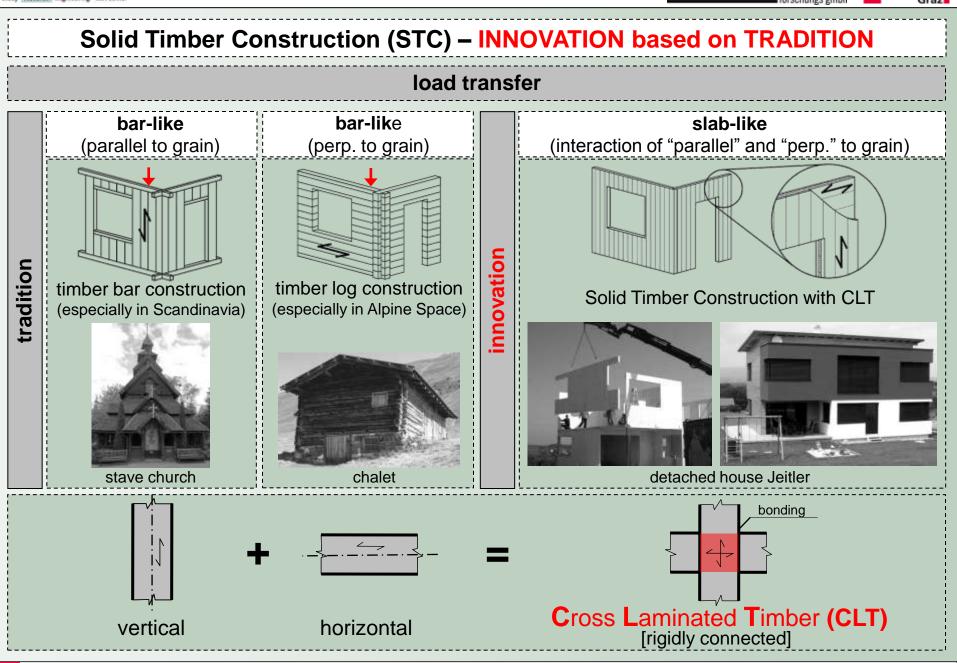
2.1 Advanced Products and Test Methods (APTM)

2.2 Material Modelling and Simulation Methods (MMSM)

Gerhard Schickhofer

6

7


CONTENT

- "TIMBER" at the Graz University of Technology
 - Institute for Timber Engineering and Wood Technology (TEWT)
 - Competence Centre holz.bau forschungs gmbh (hbf)
 - R&D Areas
 - "Solid Timber Construction (STC)" Cross Laminated Timber (CLT)
 - Introduction | History
 - Production | Transport | Assembling
 - Basics of Design (Bending and Rolling Shear)
 - Applications
- Summary | Outlook

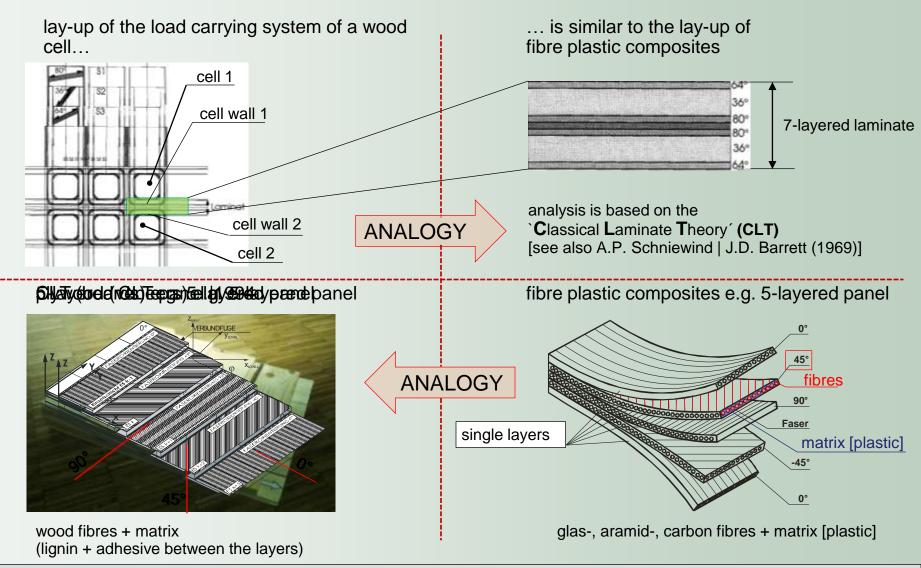
Introduction | History

holz.bau forschungs gmbh

Gerhard Schickhofer

Vancouver, Canada, 8th February 2011

Institute for Timber Engineering and Wood Technology


8

holz.bau forschungs gmbh

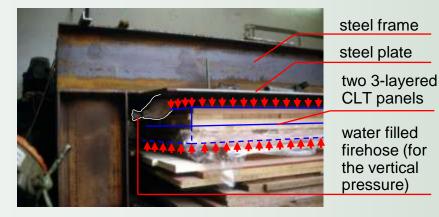
Analogies between Wood and Fibre-Plastic Composites

Scientific Activities [doctoral thesis] | 1989 ÷ 1994

Gerhard Schickhofer

Vancouver, Canada, 8th February 2011

9



Product Development

Project between 1995 and 1998

tryout press

... and ...

one of the first CLT panels produced by KLH | Austria, 1996 ...

... 15 years later – 2011 – KLH Massivholz GmbH is the world largest CLT producer

www.klh.at | Katsch/Mur | Austria

CONTENT

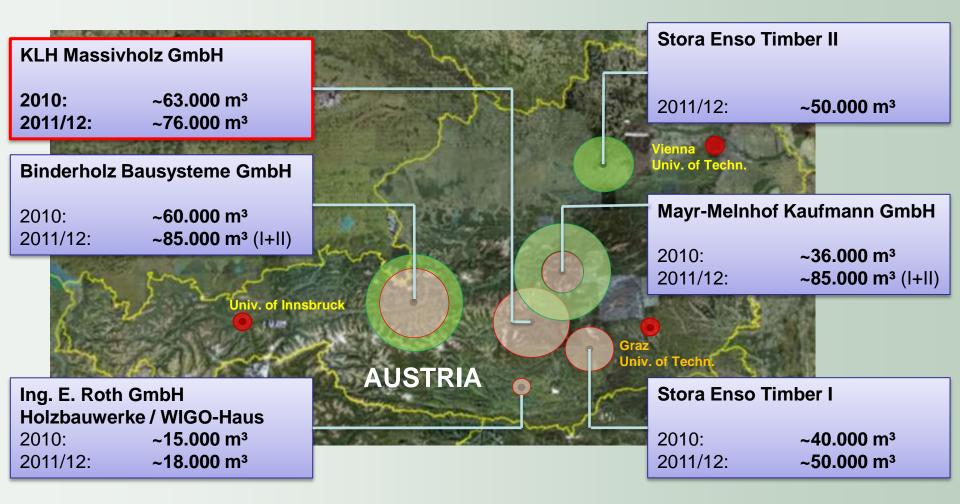
- "TIMBER" at the Graz University of Technology
 - Institute for Timber Engineering and Wood Technology (TEWT)
 - Competence Centre holz.bau forschungs gmbh (hbf)
 - R&D Areas

"Solid Timber Construction (STC)" – Cross Laminated Timber (CLT)

- Introduction | History
- Production | Transport | Assembling
- Basics of Design (Bending and Rolling Shear)
- Applications
- Summary | Outlook

Overview

CLT is a product of well-wooded regions in Europe, e.g. Austria | Germany | Switzerland

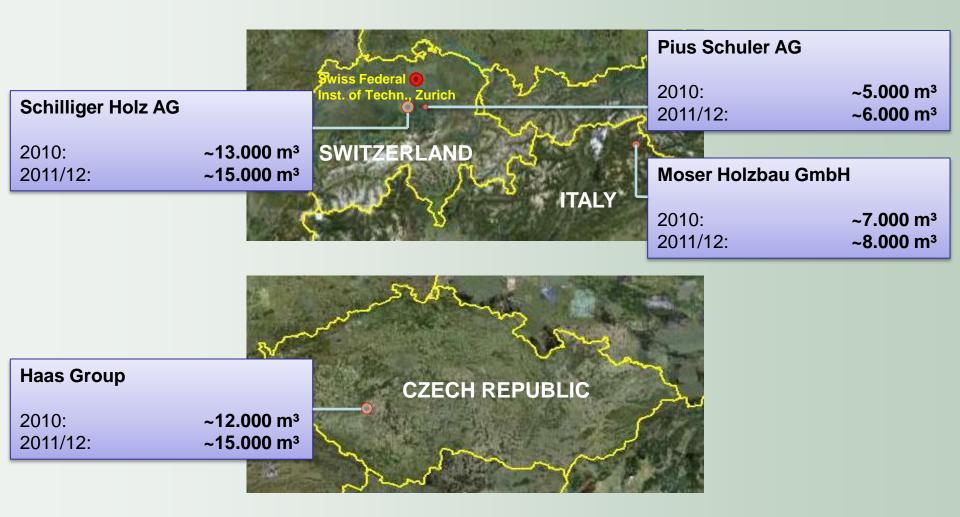

Gerhard Schickhofer

AUSTRIA

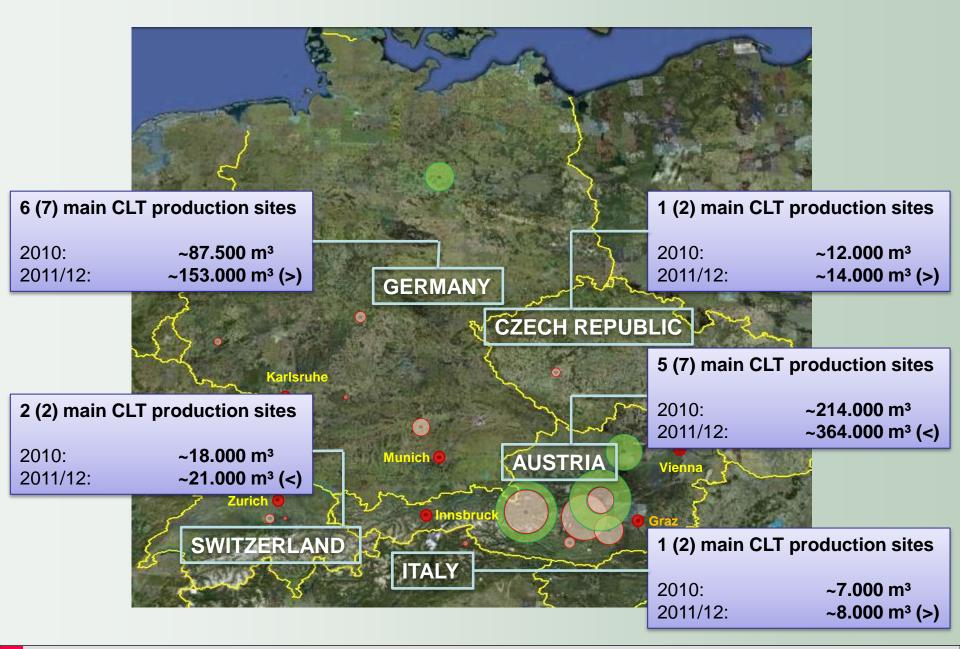
~8.4 Mio. inhab. / ~84.000 km²

14

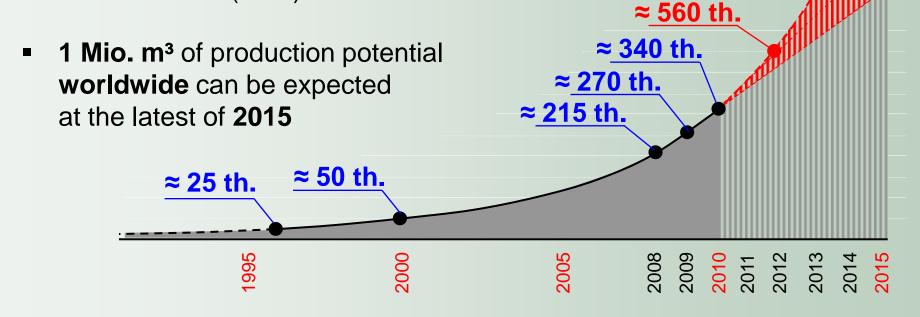
GERMANY


~81.8 Mio. inhab. / ~357.000 km²

Benken Wood Gardelegen GmbH				
2011/12: ~4	0.000 m ³	and a start of the		
Holzleimbau Derix W. u. J. Derix GmbH & Co. 2010: ~7.500 m ³		GERMANY	HMS Bausysteme G	mbH
	6.000 m ³		2010: 2011/12:	~15.000 m ³ ~17.000 m ³
Eugen Decker Holzindustrie KG			Paul Stephan Holz	
	0.000 m ³ 5.000 m ³	Karlsruhe Inst. of Techn.	GmbH + Co. KG 2010: 2011/12:	~6.000 m³ ~7.000 m³
	5.000 m ³ 0.000 m ³	Munich O Univ. of. Techn.	Finnforest Merk Gm	bH ~24.000 m ³
2011/12. ~3		3 month	2010: 2011/12:	~24.000 m ³ ~28.000 m ³



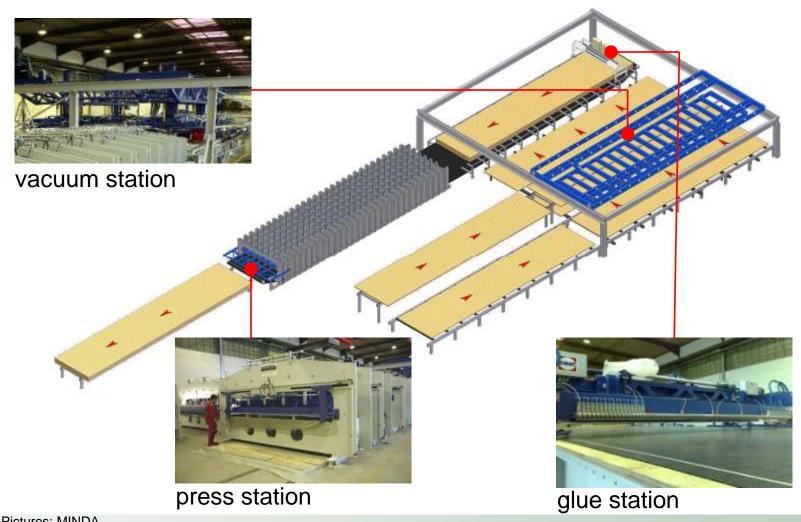
SWITZERLAND / ITALY / CZECH REPUBLIC



Development of European CLT Production

- current 15 main CLT production sites (2011/12: ~20 or more)
- ~95% of total CLT production in Central Europe is located in:
 - Austria (~63%) \rightarrow `hot spot' of CLT production
 - Germany (~26%)
 - Switzerland (~6%)

18


Examples of CLT Press Systems

		MINDA `CLT press' (GER)	SPRINGER `CLT press' (AUT)	
dimensions of CLT		6.0 m ÷ 14.0 m 2.4 m ÷ 3.4 m 3 ÷ 9-layers (≤ ~ 300 mm)	≤ 14.0 m 2.5 m ÷ 3.2 m 80 mm ÷ 320 mm	
type of press system		hydraulic continuous process	hydraulic continuous process	
bonding pressure	vertical, p_v	≤ 0.8 N/mm²	≤ 1.5 N/mm²	
	horizontal transverse, p_{h,t}	≤ 0.3 N/mm² (t ~ 300 mm)	~ 0.3 N/mm ² (t = 320 mm)	
	horizontal lengthwise, p_{h,l}	available	not available	
P_{v} $P_{n,1}$ P_{v} $P_{n,1}$ P_{v} $P_{n,1}$ P_{v} $P_{n,1}$ P_{v} $P_$				

Example of a CLT Press System (e.g. MINDA)

© Pictures: MINDA

Example of a CLT Press System (e.g. MINDA)

press station and vacuum composer glue station (with infeed chain) vacuum composer side pressure for top and bottom layers glue nozzles glue nozzles glue nozzles special infeed chain

© Pictures: MINDA

© Pictures: MINDA

- throughfeed system with simultaneous charging/discharging
- <u>capacity</u>: 12 pressing cycles/480 min. shift
 - \rightarrow ~ 40 min. per cycle
 - \rightarrow ~ 20,000 m³/shift and p.a.
- <u>glue:</u> PUR-HBS modified [open/pressing time: 12[']/39[']]; approved system by Purbond (CH)

Examples of CLT Press Systems

- further producers of CLT press systems: LEISSE (GER) | LEDINEK (SLO) | WEINIG GROUP (GER) | WOODTEC Fankhauser (vacuum press) (CH)
- a high variability regarding the bonding pressure exists between different press systems [0,1 N/mm² (vacuum) to 1,5 N/mm² (hydr.)]
 - → development of a process optimized CLT production line | optimization of bonding pressure (ongoing project)
 - project partner:
 - MINDA | JOWAT AG
 - TU Graz | UBC
 - overall aims of the development of a process-optimized CLT production line are
 - $\checkmark\,$ reduction of production time
 - ✓ reduction of investment and running costs
 - $\checkmark\,$ increasing the profitability and competitiveness of CLT

Optimization of Bonding Pressure

...focus on examination of the influence of the interaction between bonding pressure and adhesive application on CLT properties (e.g. rolling shear, delamination,...)

fixed bonding pressure (0.5 N/mm²) three adhesive applications (100 g/m² | 120 g/m² | 150 g/m²)

Nordic spruce, strength class C18 (EN 338) u ~ 12%

test plan for the project:

- 4-point-bending test configuration (rolling shear)
- shear test configuration acc. to EN 408 (small specimen)
- delamination test acc. to EN 391 (quality control)

failure mode: shear failure perp. to grain (`rolling shear´)

3-layerd CLT plate pair of par.: 125 g/m² | 0.6 N/mm² 2,5 h pressing time

press at TU Graz

4-point-bending test config. → system property `rolling shear´

failure mode: tension perp. to the grain

storage of CLT elements (production site)

lignum

study research engineering test center

Transport | Assembling

charging and transport

discharging (building site)

mounting parts for roof elements

mounting parts for ceiling elements

mounting parts for wall elements

Gerhard Schickhofer

Mounting Parts for Transport and Assembling

for walls:

lignum

study research engineering test center

- ball-shaped head connected with self-tapping screws
- textile hanger with high strength and ductility

side of a 3-layered

CLT element

mounting part at the narrow

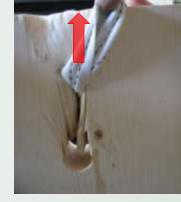
`shear´

in plane

`pull out'

failure modes

out of plane



`shear´

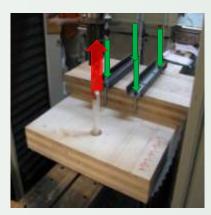
24

tension test configuration

failure mode with high deformation [safety factor:<u>7]</u>

Gerhard Schickhofer

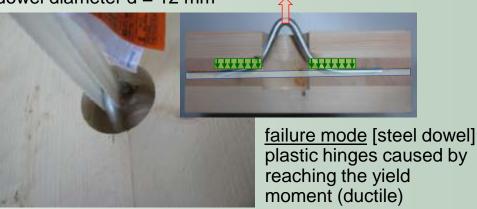
Vancouver, Canada, 8th February 2011



Mounting Parts for Transport and Assembling

for ceiling and roof elements:

tapped blind hole connection with dowel and textile hanger


tension test configuration perp. to the grain

dowel diameter d = 16 mm

<u>failure mode</u> [timber] caused by tension perp. to the grain [rigid]

dowel diameter d = 12 mm

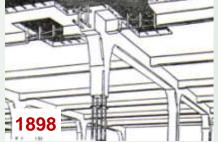
NOTE:

Extension of knowledge regarding the load carrying behavior of mounting parts is required! → Research activities are important!

CONTENT

- "TIMBER" at the Graz University of Technology
 - Institute for Timber Engineering and Wood Technology (TEWT)
 - Competence Centre holz.bau forschungs gmbh (hbf)
 - R&D Areas

"Solid Timber Construction (STC)" – Cross Laminated Timber (CLT)


- Introduction | History
- Production | Transport | Assembling
- Basics of Design (Bending and Rolling Shear)
- Applications
- Summary | Outlook

Ceiling Constructions


development of reinforced concrete related to column-plate-systems

RC frame with secondary concrete elements

1908/1910

RC ceiling on enlarged column heads ("mushroom headed")

point supported RC ceilings

point supported RC ceilings

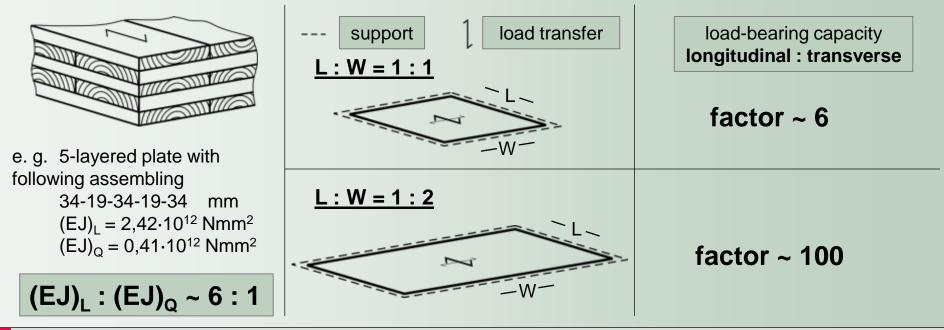
timeline

development of timber engineering related to column-plate-systems

line supported CLT ceiling (with GLT beam)

CLT/GLT ceiling element as a ripped base plate (span length 8 m)

point supported CLT element (steel or timber column)

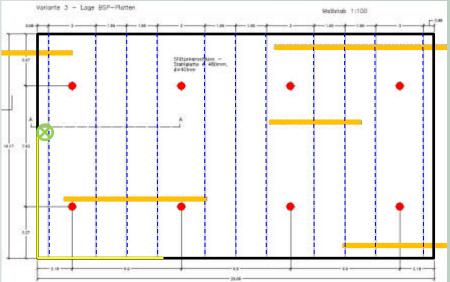

- geometric aspects and boundary conditions, in combination with
- build-up of plates

CLT is mainly used as a building element with one pronounced direction for load transfer.

therefore ...

In general, computation models based on 1D-beam theory are mostly sufficient!


design of 2D-load bearing behaviour



Gerhard Schickhofer

BUT ... 2D-effects are relevant and therefore have to be considered for ...

DEUTSCHER PAVILLON' of M. van der Rohe build:1929 | World Exhibition Barcelona

- point-supported CLT plates | roof elements (1)
- partial area supported CLT plate | roof elements (2)
- cantilever
- butt joints (construction) (4)
- point loads (
- etc.

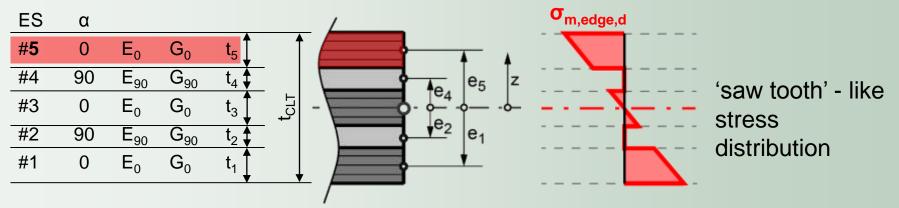
2D-effects are required!

29

Further research activities on

known approximative methods for the 1D-platestrip:

- shear-analogy-method anchored in DIN 1052
- modified γ-method
 as 'flexible jointed member', anchored in EN 1995-1-1 (informativ),
 DIN 1052, etc.
- Timoshenko beam theory
 CLTdesigner of TU Graz | www.cltdesigner.at
- All above mentioned approximative methods differ from the exact solution of the flexible shear loaded multi-layered compound beam!
 1.10
- BUT: All above mentioned approximative methods can be applied for practically relevant ranges with L/H ≥ 15 (esp. for single-span beams; <u>exception:</u> sheat rigid Euler-Bernoulli-beam)


Further research activities are needed for continuous and/or cantilever beams as well as generally supported and loaded CLT elements!

holz.bau forschungs gmbh

BENDING

e.g.: 5-layered CLT element [assumption : E₉₀=0]

calculation of the design value for edge-bending-stress $\sigma_{m,edge,d}$

$$\sigma_{m,i=5,edge,d} = \frac{M_{max,d}}{K_{CLT}} \cdot \frac{t_{CLT}}{2} \cdot E_{i=5}$$

bending stiffness of a layered cross section area

$$\mathsf{K}_{\mathsf{CLT}} = \sum_{i=1}^{n} \bigl(\mathsf{J}_{i} \cdot \mathsf{E}_{i} \bigr) \! + \! \sum_{i=1}^{n} \Bigl(\mathsf{A}_{i} \cdot e_{i}^{2} \cdot \mathsf{E}_{i} \Bigr)$$

holz.bau forschungs gmbh

calculation of the design value for bending strength f_{m,clt,d} acc. to load-bearing-model for CLT (TU Graz)

$$\mathbf{f}_{\mathrm{m,clt,k}} = \mathbf{a}_{\mathrm{clt}} \cdot \mathbf{f}_{\mathrm{t,0,l,k}}^{0.8} \implies \mathbf{f}_{\mathrm{m,clt,d}} = \frac{\mathbf{k}_{\mathrm{mod}} \cdot \mathbf{f}_{\mathrm{m,clt,k}}}{\gamma_{\mathrm{M}}}$$

with: $f_{t,0,l,k}$... characteristic tension strength of boards (raw material)

- a_{clt} ... prefactor to take into consideration
 - the coefficient of variation (COV) of the raw material
 - the laminating effect
 - the system effect
 - the size effect
 - the structure | assembling effect

The known technical-approvals for CLT differ in the interpretation of this general model approach. The differences are negligible!

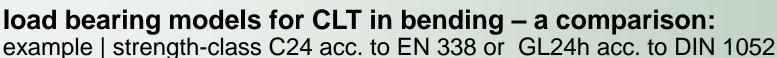
load bearing model for CLT in bending according to

technical approvals:

• ETA-09/xxx

lignum

$$\mathbf{f}_{m,clt,k} = minimum \begin{cases} \mathbf{a}_{clt} \cdot \mathbf{f}_{t,0,k}^{0.8} \\ \mathbf{1.2} \cdot \mathbf{f}_{m,k} \end{cases}$$


- with: $f_{m,k}$... characteristic bending strength acc. to EN 338 $f_{t,0,k}$... characteristic tension strength acc. to EN 338 $a_{clt} = 3.5$... for visually graded timber
- DIBt Z-9.1-xxx

$$\mathbf{f}_{\mathrm{m,clt,k}} = \mathbf{k}_{\mathrm{I}} \cdot \mathbf{f}_{\mathrm{m,glt,k}}$$

reference depth $d_{ref,clt}$ not defined! → need for research suggestion: $d_{ref,clt} = 150$ mm

with:
$$f_{m,g|t,k}$$
... charact. bending strength for GLT
 $(d_{ref,g|t} = 600 \text{ mm})$
 $k_1 \dots \text{ prefactor to take in consideration the system effects}$
 $(k_1 = 1.1, \text{ if } n \ge 4)$

Vancouver, Canada, 8th February 2011 Institute for Timber Engineering and Wood Technology

load bearing model in bending | TU Graz (reference)

 $a_{clt} \cdot f_{t,0,l,k}^{0,8} = 3.5 \cdot 14.0^{0.8} = 28.9 \text{ N/mm}^2$ $f_{m,clt,k} =$

ETA-09/xxx

engineering test center

lignum

$$f_{m,clt,k} = \min \frac{a_{clt} \cdot f_{t,0,l,k}^{0.8}}{1.2 \cdot f_{m,k}} = 3.5 \cdot 14.0^{0.8} = 28.9 \text{ N/mm}^2$$

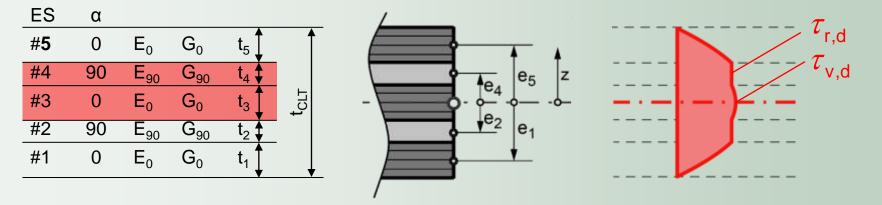
DIBt Z-9.1.-xxx

 $\mathbf{k}_{\mathsf{I}} \cdot \mathbf{f}_{\mathsf{m},\mathsf{glt},\mathsf{k}}$ = 1.1.24.0 $= 26.4 \text{ N/mm}^2$ t_{m,clt,k} =

Note: system factor k_I conservative | no depth correction, d_{ref.clt} not defined

$$f_{m,clt,d=150,k} = k_h \cdot k_l \cdot f_{m,glt,k} = 1.1 \cdot 1.1 \cdot 24.0 = 29.0 \text{ N/mm}^2$$

design

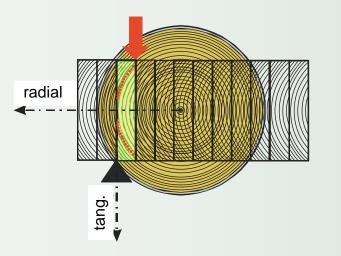


normally very low utilization ratio \rightarrow seldom relevant

SHEAR | longitudinal | transverse (rolling shear) calculation of the design value for shear stress

e.g.: 5-layered CLT element [assumtion : E₉₀=0]

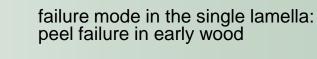
$$\tau(z_0)_d = \frac{V_{z,d} \cdot \int_{A_0} E(z) \cdot z \cdot dA}{K_{clt} \cdot b(z_0)}$$

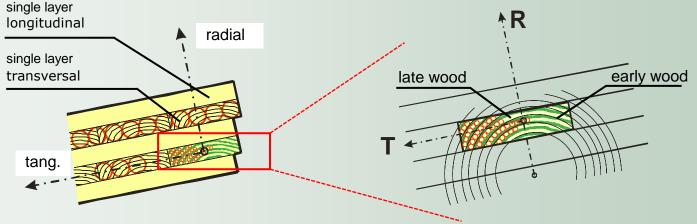

 $\rightarrow \tau_{v,d}$ (longitudinal) und $\tau_{r,d}$ (transverse)

holz.bau forschungs gmbh

Illustration of Rolling Shear

rolling shear: `overturn' of wood fibers during a shear load perpendicular to the grain




material value for rolling shear (spruce)

- $f_{r,k} = 1.0 \text{ N/mm}^2$
- G_r ~ 40 ÷ 95 N/mm²

 $\mathbf{G}_{r} \rightarrow \mathbf{G}_{90,mean}$ (acc. to EN 1995-2)

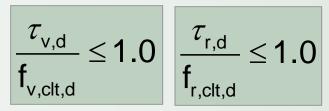
rolling shear of CLT

Gerhard Schickhofer

holz.bau forschungs gmbh

calculation of the design values of shear strength $f_{v,clt,d}$ and rolling shear strength $f_{r,clt,d}$

f_{v,clt,k} = 3.0 N/mm²

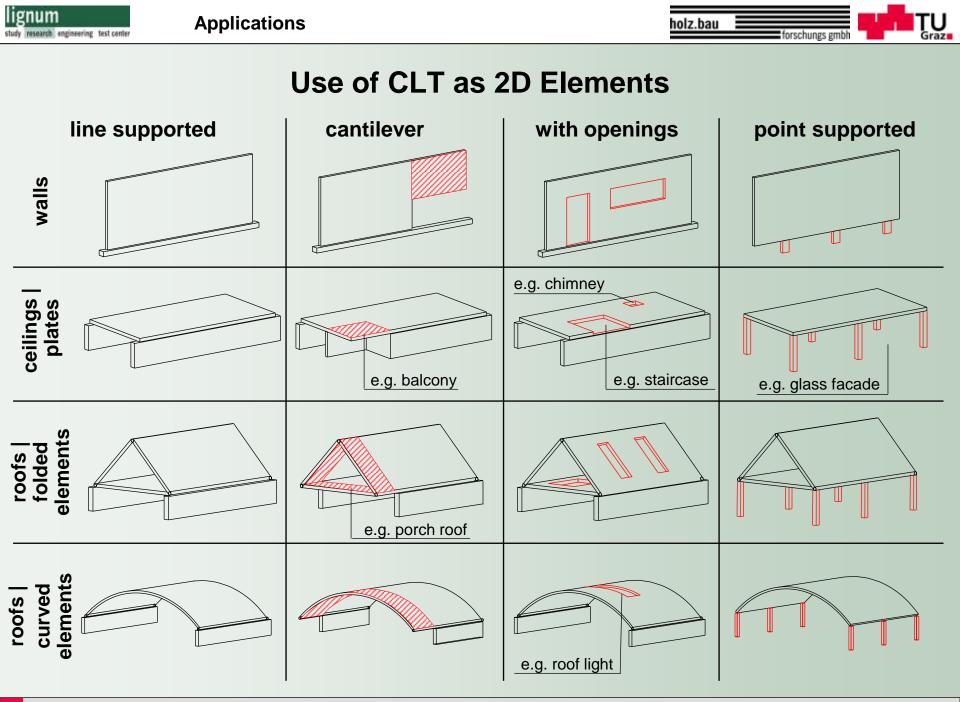

 $f_{r,clt,k} = 1.25 \text{ N/mm}^2$

... based on f_{v,k} of GLT (approximative)

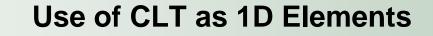
Considering the system effect, a 25 % higher value for $f_{r,clt,k}$ compared to GLT is proposed (e.g. `BSPhandbuch' | TU Graz).

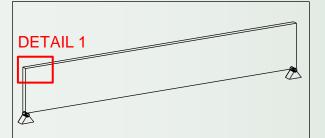
... based on `BSPhandbuch' | TU Graz

design:

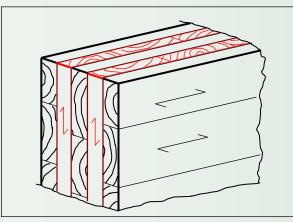

Both verifications normally result in a low utilisation level. Therefore this terms are seldom relevant.

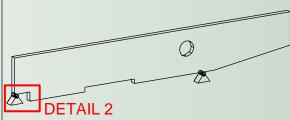
CONTENT


- "TIMBER" at the Graz University of Technology
 - Institute for Timber Engineering and Wood Technology (TEWT)
 - Competence Centre holz.bau forschungs gmbh (hbf)
 - R&D Areas

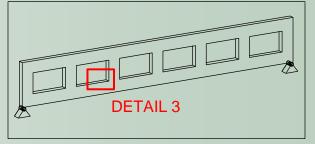

"Solid Timber Construction (STC)" – Cross Laminated Timber (CLT)

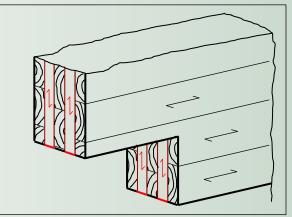
- Introduction | History
- Production | Transport | Assembling
- Basics of Design (Bending and Rolling Shear)
- Applications
- Summary | Outlook




beam without openings

lignum


study research engineering test center


detail 1: built up of a 5-layered beam element

tapered beam with notched support and openings

beam as `Vierendeel system'

detail 2: notched support

detail 3: opening

vertical (cross) layers as `reinforcement' of CLT (high capacity in shear and tension perp. to grain)

 \rightarrow Research activities are needed!

Residential Buildings

© Pictures: holz.bau forschungs gmbh, Graz

Hartberg (AUT) | 2008 CLT by KLH

© Pictures: Paul Ott, Graz

Graz (AUT) | 2007 CLT by Mayr-MeInhof Kaufmann

© Pictures: Stora Enso Timber

Eichgraben (AUT) | 2008 CLT by Stora EnsoTimber



Residential Buildings

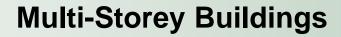
© Video: Stora Enso Timber

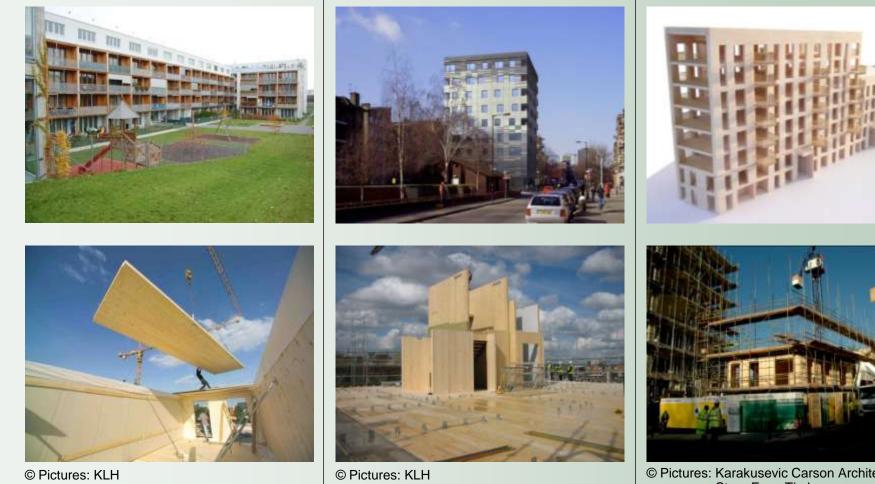
© Pictures: holz.bau forschungs gmbh, Graz

3-storey building Judenburg (AUT) | 2002 CLT by KLH

© Pictures: KLH

4-storey building Judenburg (AUT) | 2002 CLT by KLH


© Pictures: KLH


5-storey building Berlin (GER) | 2010 CLT by KLH

lignum

study research engineering test center

5-storey building Vienna (AUT) | 2005 CLT by KLH

Gerhard Schickhofer

lignum

study research engineering test center

8-storey building London (UK) | 2008 CLT by KLH

Vancouver, Canac

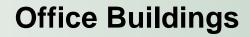
Kindergarten

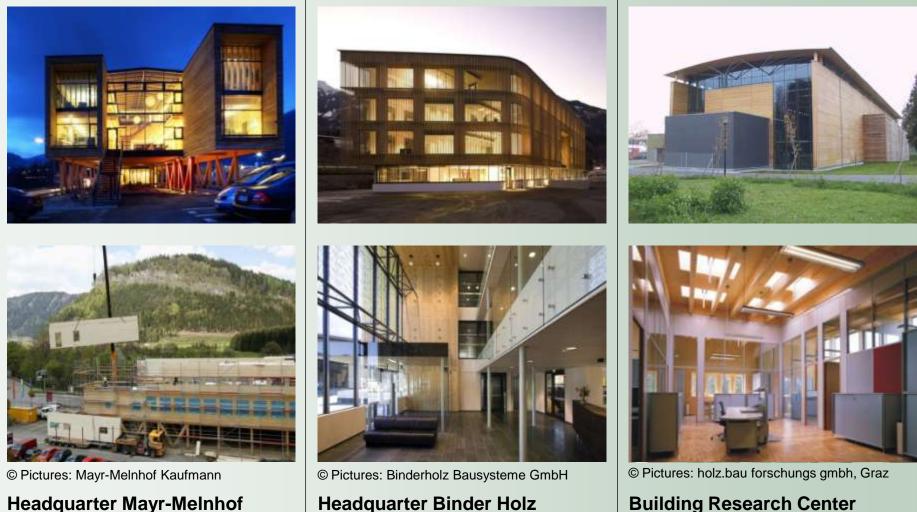
© Pictures: Mayr-Melnhof Kaufmann

Peggau (AUT) | 2009 CLT by Mayr-MeInhof Kaufmann

© Pictures: Binderholz Bausysteme GmbH

Innsbruck (AUT) | 2008 CLT by Binderholz Bausysteme


© Pictures: Finnforest Merk


Darmstadt (GER) | 2006 CLT by Finnforest Merk

lignum

study research engineering test center

Headquarter Mayr-Melnhof Leoben (AUT) | 2008 CLT by Mayr-Melnhof Kaufmann

Fügen (AUT) | 2007

CLT by Binderholz Bausysteme

CLT by Holzleimbau Stingl

TU Graz (AUT) | 2006

CONTENT

- "TIMBER" at the Graz University of Technology
 - Institute for Timber Engineering and Wood Technology (TEWT)
 - Competence Centre holz.bau forschungs gmbh (hbf)
 - R&D Areas
- "Solid Timber Construction (STC)" Cross Laminated Timber (CLT)
 - Introduction | History
 - Production | Transport | Assembling
 - Basics of Design (Bending and Rolling Shear)
 - Applications
- Summary | Outlook

Summary

- Solid Timber Constructions (STC) with Cross-Laminated Timber (CLT) is an already well-established building system in Central Europe.
- The production and consumption potential of CLT in Europe, already on a high level, creates a fast growing market [~ + 25 % p.a.].
- The timber product CLT has the potential to become THE new `green' and CO₂-active solution to replace current reinforced concrete as prefabricated 2D element (e.g. ceiling constructions).
- The universal application of CLT residential houses, multi-storey and communal buildings, bridges, etc. – leads to the increasing interest of engineers and architects.

holz.bau forschungs gmbh

Outlook Regarding the Presentation

CLT – Research and Testing at TU Graz

Day 2 – Wednesday, Feburary 9, 2011, 10:10 ÷ 10:50

- point supported ceilings and roofs
 - \rightarrow determination of compression perp. to the grain capacity of CLT panels
- verifications regarding serviceability limit state (SLS)
 → behaviour of CLT ceiling systems in case of vibrations
- in-plane shear capacity and verification methods

 → determination of in plane shear strength properties and
 design models
- CLT designer software tool for designing CLT elements
 Concept | Applications | News [A. Thiel]
- summary | outlook

THANK YOU FOR YOUR ATTENTION

Swimming pool | Hagenberg i.M. / AUT

Gerhard Schickhofer

Vancouver, Canada, 8th February 2011

50

Contact: Univ.-Prof. Dipl.-Ing. Dr.techn. Gerhard Schickhofer

Institute for Timber Engineering and Wood Technology, Graz University of Technology | AT Competence Centre holz.bau forschungs gmbh Graz | AT

Inffeldgasse 24/I A-8010 Graz

gerhard.schickhofer@tugraz.at phone.: +43 316 873 4600